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1. Introduction 

As is well known, the Penrose transformation enables one to state a one-to-one 
correspondence between instanton solutions on S4 and holomorphic vector bun- 
dles on [Tp3 obeying some additional reality conditions [ I]. This is the basis for 
the ADHM construction [ 21. In this paper we are going to develop an alternative 
approach to instantons, which was proposed in ref. [3]. Compared with the 
ADHM construction, which is based on the monad description of holomorphic 
bundles, our approach has its origin in some ideas of Takasaki [ 41 about locally 
defined self-dual Yang-Mills fields. Giving these ideas a clear geometric interpre- 
tation in the global case one is able to relate to each gauge equivalence class of 
instanton solutions a rational matrix-valued function on P3 with some special 
properties. The advantage is that the gauge freedom is completely eliminated. 
This is in contrast to the ADHM construction, in the framework of which an 
action of a finite-dimensional Lie group still survives as a reminiscence of the 
infinite-dimensional group of gauge transformations. 

Let 7r:p3-+S4 be the Penrose projection. The fibres are projective lines in [Fp3, 
the so-called real lines. Fix a real line yO c P3. Every instanton bundle is holo- 
morphically trivial on all real lines. We shall consider framed holomorphic bun- 
dles. This means that the data include a choice of a holomorphic trivialization on 
-Sp. Let M( r, c) designate the moduli space of framed instanton bundles on P3, 
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where r is the rank of the vector bundles under consideration [hence the gauge 
group is SU (r) ] and c is the value of the second Chern class. 

Let P2 be a projective plane in P3 containing YO. Donaldson [ 51 has shown that 
the restriction from P3 to P2 induces a one-to-one mapping from M( r, c) onto the 
moduli space OM( r, c) of framed holomorphic bundles on P’. In the latter case 
no additional condition is required. We are going to make use of this result and 
concentrate on the description of OM( I, c). 

Let us now elucidate the geometric interpretation of Takasaki’s approach. S4 is 
the manifold of real lines in P3. Let 6$ be the Grassmann manifold whose points 
are projective lines in P3. lF, ,2 c P3 x G2 designates the flag (“coincidence”) man- 
ifold. Fix a point P,+YO. Then all the lines in P3 passing through PO form a sub- 
manifold P2 embedded into G2 and p3:=prF’ (P’) c [F,,Z is the blow-up of P3 at 
the point PO. Furthermore, relating to each point of P3 the unique real line passing 
through it one gets an embedding I: P3-4F,,2. Summarizing, we get the following 
commutative diagram: 

The projection K and the embeddings I:P~-[F,,~ and S4-G2 are real analytic; 
the other mappings in the diagram are holomorphic. 

The usual step in the local approach is to use analytic continuation and replace 
four real variables by four independent complex variables. On the global level 
this means that S4 is replaced by ~2~ and P3 by IF 1,2 and the analytical continuation 
is provided by the pull-back mapping pfl. Actually, if a functionfis holomorphic 
on P3, then it can be regarded as a real analytic function on r(P3) c ff 1,2 and the 
unique analytic continuation to IF, ,2 is pr:J 

The object which is then studied is a transition function G of the pulled back 
bundle on IF,,,. Suppose that G is defined on a subdomain of pr; ’ ( %), where 
%c G2 is an open set such that the tibration pr2:[f,,z-+G2 is trivial over q with a 
coordinate I on the fibre. In the general situation, the function G(;I) is defined 
on a neighbourhood of the unit circle ( ] ;I ] = 1 } and one aims to find the Birkhoff 
decomposition [J is constant on the tibres, W( 0) = I&‘( 00 ) = 1 ] 
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G(A)= @‘(A)-‘J-%‘(A) . 

On the global level, this can be achieved using the results about the loop group 
L GL(r, C), namely the existence of the diffeomorphism 

L,GL(r,C)xL+GL(r,@)+LGL(r,@), 

with the image being open and dense in the component of the unit. Reference [ 61 
serves as a nice source of information but we shall not pursue this topic further. 

Takasaki’s result can be rephrased in the following way. He proposed to con- 
sider the restriction IV(‘) := W]p and introduced the term “initial condition” 
for it. Let 

be a rational mapping. It is singular on the submanifold pr r * (PO) 2 P’. Then the 
pull-back G= q* W (‘) together with the Birkhoff decomposition provides a solu- 
tion to the initial value problem. 

The central observation made in ref. [ 3 ] is that one can pick out from every 
equivalence class a unique solution such that 

Jqkl, J]P’=l 

[here again P2 z pr, ’ (PO) 1. The corresponding transition function G is called 
canonical and can be constructed in the following way. Let r be the real structure 
on P3 and write Pm := r( PO). Then the point Pm lies again on Yo. Let us now recall 
Barth’s result [ 71 which claims that the bundle is holomorphically trivial on al- 
most all lines in P3. The exceptional lines are called jumping and if furnished with 
appropriate multiplicities, they form a divisor in G2 of degree c2. As a corollary 
one can prove that the jumping lines passing through a fixed point, say PO, form 
a divisor in P’ c G2 of degree cz (corollary 4.2 in ref. [ 3 ] ). Denote by Y. (resp. 
9,) the union of all jumping lines containing the point PO (resp. P,) and put 
%o=lP3 \ YW, ?&,=P3\ 9,. (Then Pot eo, Pootz &,, for the bundle is holomorphi- 
tally trivial on Yo. ) One can continue the distinguished trivialization on Y. along 
all the lines that are not jumping and pass through P, (resp. PO) to get a holo- 
morphic trivialization {Sj} (resp. {gj}) on e. (resp. ?&,). The corresponding 
transition function 

is the desired “canonical transition function” (CTF). 
As we have already mentioned we are going to make use of Donaldson’s restric- 

tion. The same construction can be reproduced verbatim for framed holomorphic 
vector bundles on P2. The set Y. (resp. 9ZZ) is then a union of finitely many 
jumping lines and provided we furnish them with multiplicities according to 
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Barth’s result, the number of these lines exactly equals c2. Choose homogeneous 
coordinates ( zO, z,, z2) on P2 in such a way that the line 64; is determined by the 
equation zo= 0 and the points PO, Pm are determined by the equations zo=z, =O 
and z o = z2 = 0, respectively. The CTF is known to be unimodular and to have the 
following form: 

G(z) = 1+ 
1 

/dQdd a(z) ’ 

/LO(Z) =Zf + j$, SjZ&ZC-‘3 

/b,(z) =z; + i tkZ$Zyk ) 
k=l 

(1.1) 

where Sj, tkE@, RjkE@“‘e The polynomials ho(z) and &(z) are unambiguously 
specified by the condition that the zero setsfio (z) = 0 and/l,(z) = 0 coincide with 
Y. and 9, (including the multiplicities), respectively. 

The construction is gauge independent and the mapping 

UM(r, C)3 [F]H(Sj, fkRjk)ECN, N=2C+r2C’ 9 

is holomorphic and injective and the image is a locally algebraic set in CN. This 
means that there exists an irreducible [recall that OM(r, c) is connected] alge- 
braic set SZ! (r, c) in CN containing cOM( r, c) and both sets have the same complex 
dimension, dim 8M( I, c) = dim d (r, c) = 2rc (for c sufficiently large). To get 
UM( r, c) one has to remove from d (r, c) some closed subset of singular points 
but this paper is not concerned with these singularities. 

After recalling the final result stated in ref. [ 3 ] we are able to formulate prop- 
erly what is the goal of the present paper. The task is to describe explicitly the 
algebraic sets d (2, c), c= 2, 3, . . . (the one-instanton case is transparent and well 
known), i.e., we aim to derive the corresponding algebraic equations. This task 
splits into two steps. First, one is concerned with the problem of removability of 
singularities. Let G be a matrix-valued function on P2 having the form ( 1.1). If 
regarded as a transition function, G determines a vector bundle & on 

Let I : “ww P2 be the embedding and sG be the sheaf of germs of holomorphic 
sections in &. It can be shown rather easily that the direct image @‘$= I*%~ is a 
coherent sheaf on P2. The question to be answered is whether PG is a locally free 
sheaf corresponding to some vector bundle FG on P2. The problem is local and 
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can be reduced to an assertion about separation of singularities of a meromorphic 
matrix-valued function defined on C’. It turns out that for arbitrary rank r the 
singularities are always removable. Second, from the construction it follows that 
the CTF corresponding to 9$ coincides with G as a function on P’. But this does 
not mean that G is already written in the canonical form. It is true that the zero 
set of the polynomial fiO (z) coincides with the set of jumping lines 54, but the 
multiplicities may differ. Hence the second Chem class c2(FG) must be com- 
puted. The equality 

then provides the desired algebraic equations. 
The result suggests a parameterization of the moduli space 8M( 2, c). To be 

specific, the two-instanton case is considered more closely in the appendix. This 
case is distinguished by the fact that it is not as trivial as the one-instanton case 
is but the number of involved parameters is low enough so that one is able to 
handle them. We found by error and trial the explicit form of the inversion of 
Donaldson’s restriction mapping (which is not known in the general case) and 
in this way obtained a convenient parameterization of the two-instanton case, 
distinct from those being used before (such as the modified ‘t Hooft solutions). 

2. Removability of singularities 

Let G have the form ( 1.1). Consider a point QEP’ such that 

We note that two jumping lines in P2 such that one of them contains the point PO 
and the other contains the point P, intersect transversally. Otherwise both pro- 
jective lines would coincide and this is a contradiction for the line p,P, is not 
jumping. Consequently, the sets b. (z) = 0 and fim (z) = 0 are smooth and trans- 
verse in some neighbourhood of the singular point Q and so Q is an isolated in- 
tersection point. Owing to a consequence of Hartog’s theorem (which guarantees 
the removability of singularities of a complex analytic function provided the sin- 
gular points are contained in an analytic set of codimension at least two) the 
discussion can be simplified. The singularity in the point Q is removable if and 
only if the bundle FG is holomorphically trivial on some punctured neighborhood 
e\ {Q} of the point Q. The situation can be studied locally. According to the 
above remark one can choose coordinates 4; q on a neighbourhood 93 of the point 
Q in such a way that the set/co(z) = 0 (resp./l, (z) = 0) coincides on ‘4Z with <= 0 
(resp. v=O) and hence Q has the coordinates <=q=O. The vector bundle $c is 
holomorphically trivial on %Y\ {Q} if and only if the poles of the transition func- 
tion G can be separated, as the following theorem asserts. 
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Theorem 2.1. Let G(<, n) be an rx r matrix-valued function defined on a neigh- 
bourhood of the origin in @ 2. Suppose that G is unimodular and meromorphic with 
the poles on the set @I= 0. Then there exists a decomposition G= XY, where X and 
Y are again unimodular and meromorphic matrix-valued functions and X (resp. 
Y) has the pole on the line {= 0 (resp. n= 0). 

We can suppose that the order K of the pole of G( <, q) on the line q= 0 is positive 
(otherwise there is nothing to be proved) and proceed by induction. So it is suf- 
ficient to prove the induction step. 

Induction step. There exists a matrix-valued function H(& II) which is unimo- 
dular and meromorphic with the pole on the line q = 0 and such that the product 
GH has the poles again on the set & = 0 but the order of the pole on the line q= 0 
is equal at most to (K- 1) . 

The proof is based on the following series of lemmas. 

Lemma2.2. Let f beajieldandZj~fr*‘,j=O, 1, . . . . v-l, besomematrices. Put 
u-l 

Z(l)= C  Zj/lj, 

j=O 

3= 

Ii Z2”-l zo z, Z2”-2 z, 0 i 1.. 0.. . . . 4 0 0 i ) I 
Let o be the order of the zero of det Z(A) at the point 1=0. Then 

a>,~ iffdimker(3)av. 

Proof Put 

B. =f’@-*@Df’ (v copies) , 

and let nj:23jg+fr, j=O, 1, . . . . Y - 1, be the projection onto the jth direct summand 
Further, put 

~j={a)E~O;7tO(~)=".=7Cj_)(V))=O}, l<j<v. 

So we have filtrations 

8,~23,3--3%“=0, 

ker(3)=RIR, x***DR~=O, fij::=ker(3)nBj. 
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Let E be the shift operator on !I$,, 

E&h > -,.L-, ) = (Wi, -,.L) . 

Clearly, E( fi,) c sj+, and the induced mapping (denoted by the same letter) 
E:Rj/Rj+I +Rj+ r/Rj+, is injective. Moreover, using the projection rrj, one can 
embed the factor space Rj/Rj+, into f’ and after this embedding the mapping E 
becomes identical and we thus have the inclusions 

R,/R, c St,/522 c ... c R,- ,/R” c f’. 

Choose direct summands 9; ~,+,/sij+~=s2//Ri+,0~j+,, for O<i< v-2, I$= 
R,/R, by definition, and put lj=dim X?) Then 

Ker(Z,)=R,_,/R,=~!,O~,O...O~,_, , 

dim Ker(Z,,)=lO+l, +.-.+I,-, , 

dimKer(3)=dim(R,/R,)+dim(R,/R,)+~~~+dim(R,-,/R,) 

=vlo+(Y-l)I,+...+Z”-, . 

Choose a basis Gk; 1~ k<I,} in the space Qj and the vectors pjk.ERj such that 
7Cj( ~j~) ~5~. Further, choose a direct summand 6: f’= Ker (Z,) 06, and a basis 
k I, ..*, gd} in 6. Set 

u-l 

F(~)=[(F,,(;l)),.j~u-*, CZOgj)lsj<dl 9 
I <kc/, 

=Z~-j~~+Z~-j-l~j+l(~j~)+“‘+zlK~-*(v)ik) 7 
for l<j<u-1, 1 <k<l,. By construction, the vectors { (hjk)I<j<v-l,I<k<b, 
(Z,,g,) , GjGd} are independent in f’. 

Summarizing, one can draw the following conclusions. 
( 1) det (Z(A)F(1) ) does not contain negative powers of 1. On the other hand, 

the lowest power of 1 appearing with a nonzero coefficient in det F(1) is 

-(&+(v-l)I,+...+I,-,)=-dimker(3). 

Hence @dim ker(3). 
(2) If/o=dim(R,/Si,)=O, then a=dim ker(3). Actually, lo=0 implies that 

det(Z(A)F(J) )=det( (hjk)j,k, (Zogj)j) +0(n) 5 

and hence cr- dim ker (3) = 0. 
(3 ) If dim ker( 3) < Y, then I,= 0 and, consequently, o= dim ker (3). Actually, 

vl, G dim ker (3) < v is possible only if &,= 0. 
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This proves the lemma. 0 

Let !X be a local Noetherian ring with a maximal ideal m. Denote by t=%/m, 
f = m- ‘32 the corresponding fields. We suppose that 32 is a f-algebra, i.e., % = f@m 
and hence f c 31 c f. The symbol (x,, . . . . xk).,, stands for the linear hull of ele- 
mentsx,, . . . . xk with coefficients from an Abelian group A. Let %JI, = !JJl , = ... = Em,-, 
z ‘%‘be identical free ‘S-modules and !IJI =!UI,,O!III, O~~~O!UIm,-, be their direct sum. 
E:W+Wisagaintheshiftoperator.Let 0:%+1 (or~:%‘-+fr) betheprojection. 
For p= &, . . ..f.-,)o!JR such that ~(9) #O, the number 

p(y,):=v-I-min{k;oCfk)#O} 

will be called the weight of the element v, and we put 

Yw:=dLl-,kfr, P=Pc(V). 

Lemma 2.3. Suppose there is given a collection @={p,, . . . . qO} of elements from 
the module !JR satisfying 

(1) Ew{R, vz, -.., a-,},fork=l, . . . . ~3 
(2) CD is independent over f. 

Then there exists a collection Y= { I,u,, . . . . vO} of elements from 1172 satisfying 
(I) there exist integers sjENO such that 

~jEm”y/,+(y/,,...,y/j-l)~, foral1-i; 

(II) all the vectors W( vj) are nonzero andfor each SE (0, . . . . v- I} the collection 

f(s; Y):={Y(~j);j);V/iEand~(y/j)=s} 

is independent over f (or empty); 
W.. EV/ig <u/l, . . . . Wj- 1 >r,forallj. 

Remark. From (I) it follows that 

(I’ ) ~jEm-"'~j+(~l,...,~j-l >f, 
<v/l> . . . . vj)f=((DIY+.., (Oj)f, forallj. 

Prooj Observe that (III) is a consequence of (I’ ) and property ( I ) of @. Thus 
it is enough to verify only conditions (I) and (II). We shall construct Y/step by 
step requiring the collections Yj:= {v/r, . . . . vj} tosatisfy (I) and (II). Forj=O, !P,, 
is empty. Let j>O and suppose Yj-, has been found. By Krull’s Intersection 
Theorem, there exists a maximal integer Sj~~, such that 

This means that there exists y/jcYJI such that condition (I) holds (for this j). By 
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the choice Of Sj, o( v,) is nonzero. One can select u/i in such a way that the weight 
/L=,U(v/i) is th e 1 owest possible. It remains to verify that 5 satisfies (II). If sf p, 
then T(s; Y,) =r(s; Yj- 1) and condition (II) is valid. For s=p, 
r(p; Yj) = {r(p; Yj:.- I), y( vi)} and (II) is again valid due to the minimality con- 
dition imposed on ,LL( vj). 0 

Suppose Y={w,, . . . . we} satisfies (I), (II), (III). For an element vj= (Jo, . . . . 
.&,,-, ) of Y we put 

The factor mapping o can be extended as a ring homomorphism, w: %‘[A] +V[A]. 
For an arbitrary m-tuple of indicesj ,, . . . . j,,, the external products 

QjI A *** A Qj,,, 3 W(Q/I) A .~.Ao(Q~,,,) (2.2) 

can be regarded as polynomials with coefficients from the space A !R’ and A I”, 
respectively. 

Lemma 2.4. 
(i) For an arbitrary m-tuple of mutually different indices j,, jz, . . . . j,,, the degree 

of the polynomial Qj, A 1.. A Qj,,, is less than or equal to max{j,, . . . . j,,,} - m. 
(ii) Suppose that a subcollection !P’ = (c, , . . . . wjm}, j, < ..* <j,,,, satisfies: 
(a) {F(O; !P ), F( 1; !Y ), . . . . F( v - 1; y/’ ) } is independent over t, 
(b) (F(s; !P’ ); k<s< v- l)t=(r(s; !P); k<s<v-l))t,foraflk=O, 1, . . . . v-l. 

Then the degrees of the polynomials (2.2) are the same and equal to o-m. 

Proof 
(i ) We can suppose that the indices are ordered in increasing order. The shift 

operator E can be naturally redefined, E:!Rr[A]-+%r[;l], 

Property (III) of Y means that 

EQjE<QI,***, Qj-,)t, forj=l,..., o. (2.3) 

Owingto (2.3) andsince Qj(A)=Qj(O)+AEQj(A), onefindsthat 

Q, (2) A -AQk(n)=Q,(0) A’-AQk(O) , (2.4) 

for k=O, 1, . . . . cr. Now, put S=j,,, - m. To prove (i) we proceed by induction on 
S. IfS=O then j,=l, . . . . j,,,=m, and (2.4) proves the assertion. If S> 0, then 
j,,, > m and it suffices to show that the degree of the polynomial 
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is less than S. But with respect to (2.3), this is already a consequence of the in- 
duction hypothesis. 

(ii) Denoteej=lr(J Y>l,e~=lrCj; !P’)l.Clearly,C~~=oandconditions(a), 
(b ) imply that 

ciSc~+, +.-+c:,-, 2~) fork=O, 1, . . . . v-l . 

Summing these inequalities one gets 

(2.5) 

But by condition (a), the 1.h.s. of (2.5 ) is equal to the degree of the polynomial 
W(Q/I 1 A ..* A O( Qj,,,). Using part (i ) of the present lemma one finds that 

deg( Qj, A ... AQj,,,)~a-m~deg(o(Qj,) A”‘AOCQj,,,)) . 

But the homomorphism o cannot increase the degree of the polynomial and hence 
the equality signs must hold. 0 

Proof of the induction step. Let us write G( c, q) in the form 

and construct a blockwise matrix 

Go 0 . . . 0 

3= ;I G, *** i . c,, Gr--2 . . . 

The unimodularity of G and the fact that K> 0 imply that the order of zero at the 
point q=O of the function det(G,+G,rl+...+G,_,~‘-‘) is not less than r. Let 
‘%= G=@(5) be the local ring of germs of holomorphic functions at the point 
<= 0. Then I=@ and f is the field of germs of meromorphic functions. Lemma 2.2 
implies that there exists a collection @= {q,, . . . . Pi} of elements of !FVO~~~OW 
such that &j=O for all j and, moreover, properties ( 1 ), (2) in lemma 2.3 (with 
o=r) are satisfied. Lemma 2.3 ensures the existence of a collection Y= {v/i, . . . . 
vr} satisfying properties (I ) , (II ) , (III ) . Now, deleting subsequently according 
to decreasing weight elements from Y one arrives at a collection 
Y’ = { vj,, *a*, vj,,} satisfying the properties (a), (b) from lemma 2.4 ad (ii). The 
polynomials Qj( VW’ ) EW[ ‘I-’ ] defined by (2.1) can be regarded as germs of 
meromorphic vector-valued functions at the point <= q= 0. Their poles lie on the 
line q=O. Let us denote these meromorphic functions by 
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Hk(& q) =Qjk(<, II-‘) , fork= 1, . . . . m 

Since 3vj=O for allj, the order of the pole on the line q=O of the meromorphic 
function G(<, q)Hk(& q) is equal at most to (K- 1). One can complete the col- 
lection {Y(vj/il), . . . . y( v/,,,,)} by vectors {h,,,+ , , . . . . h,} to a basis in @’ and put 

Hk(<, q)=hkq, for k=m+ 1, . . . . r. 

Let H’ (r, r,~) be the matrix with columns Hk(& q). From lemma 2.4 ad (ii) it 
follows that K( <, q) := det H’ (<, 17) does not contain negative powers of q and 
hence is holomorphic in a neighbourhood of the origin in @‘. Clearly, K( 0,O) # 0. 
Then the matrix-valued function 

WC rl) =H’ (& rl) diag(K(t, rl)-‘, 1, . . . . 1) 
will do and can be used in the induction step. cl 

3. Computation of the topological charge 

In what follows, we restrict ourselves to rank-two bundles, i.e., the gauge group 
is assumed to be SU (2 ). For a 2 x 2 matrix A we shall use the notation 

AO=tr(A) 1 -A. 

Hence (AB)‘=B”Ao and A”.4=AAo=det(A) 1. The matrix-valued function G 
is again assumed to have the form ( 1.1) and in virtue of theorem 2.1 it deter- 
mines a holomorphic rank-2 bundle FG on P2. 

Barth’s result about jumping lines suggests a way to compute the second Chem 
class c2 ( FG). Let p2 c P2 xP’ be the blow-up of P2 at the point PO. P’ is assumed 
to be embedded into P2 as the line determined by the equation z2=0. Then the 
sheaf b:= R ‘pr2,pfl &-( - 1) [the first direct image of the pulled back twisted 
sheaf pry 9&( - 1) ] has a discrete support and the sum of the dimensions of the 
stalks is equal to cz ( FG). This means that this sheaf determines a divisor 9 in P’ 
such that supp 9= supp d and deg 9= c2. For Q~supp &’ c P’, denote by o(Q) 
the dimension of the stalk over the point Q. By definition, (T(Q) is the multiplic- 
ity of the jumping line PO Q. Thus, 

c2= CdQ>, 
where the sum runs over all jumping lines PoQ. 

One can use <=z,/zo as a coordinate on the projective line P’ c P2. The value 
&co corresponds to the point P,EP’. Our next task is to compute the multiplic- 
ity a(x) of a jumping line Z’=P,Q where the value T=x corresponds to the point 
QEP ‘. Then one can use ~=z2/zo as a coordinate on the line Y. The value q=co 
corresponds to the point PO. After the blow-up at the point PO, one chooses a 
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pencil neighbourhood of the jumping line and faces the following situation. Let 
%J be a sufficiently small neighbourhood of the point Q in P’ and Yr, $2 be two 
open subsets of @x9 determined by the inequalities q#O, qfy,, . . . . q#yC and 
r#x, qfoo, respectively, where {Yj} are the roots of the polynomial&,(q). The 
matrix-valued function $G( <, q), keZ, is well defined on Y<n Y$ and as a transi- 
tion function gluing the trivial bundle on YI$ to that on Y<, determines a twisted 
vector bundle F(k) on ${u $i. The singular points corresponding to the values 
<=O and q=O, y,, . . . . y,, are removable. The multiplicity o(x) then equals the 
dimension of the first cohomology group, 

a(x)=dimH’(%xX,9(-1)). 

A convenient way to compute a(x) is to use a resolution for 9( - 1). After 
translation {= <’ +x, one can suppose without loss of generality that x= 0. Let us 
express the matrix-valued function G(<, q) in the form 

wherev>O [thecasev=Oistrivial:o(O)=O],~(O)#O, 

,u=p,+-+pL,, the roots yl, . . . . y, are mutually different and 9 (0, II) #O, 
P(<,yj)#O, l~j~n.AsG(P,)=G(P,)=l,thedegreeofthematrix-valuedpo- 
lynomial 9 (& ?,J) in the variable <with $’ being fixed (resp. in the variable q with 
{being fixed) is less than ~+degb (resp. p). The columns of the 2 x4 matrix- 
valued function 

represent a quadruple of holomorphic sections of the vector bundle F(p) in the 
trivialization on the open set K. The same holomorphic sections in the triviali- 
zation on Y$ are given by the columns of the matrix-valued function 

The isolated singular points are again removable, and the quadruple r(<, q) of 
holomorphic sections generates F(U) [i.e., rank r(<, q) =2] everywhere on 42~ 9, 
possibly except the critical points (<, q) = (0, y, ), . . . . (0, y,,). 

Lemma 3.1. The quadruple of holomorphic sections r( {, II) generates F(p) in the 
critical point (r, II) = (0, yj) if and only if 

t”(V-Yj)NG(tv tt> Ic+~.rl=.v, ~0. (3.1) 
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ProoJ: We can suppose without loss of generality that yj=O and omit in this proof 
the subscriptjin,+ We know that there exists a decomposition G=XY. The order 
of the pole of the matrix-valued function X on the line <= 0 is equal to Y and the 
order of the pole of Y on the line q=O is equal to p. Then the columns of the 
function X represent a frame of F(p) in some neighbourhood of the point 
(<, q) = (0, 0) in the trivialization on $$ In this frame the quadruple of holo- 
morphic sections is expressed as 

x-‘(k v) f-z(tt tl) = wx-‘K II), vur, VI) . 

Since rank(<“X-‘)e=oa 1, rank(qj’Y),,=,a 1, we have 

rank(t”X-’ (t II), VU<, rl) )c=o.,,=o =2 

if and only if 

Now it suffices to notice that the unimodularity of X implies (X- ’ )‘=A’. q 

Throughout the rest of this section, condition (3.1) is assumed to be satisfied. 
So we get a resolution 

O-+X+0( %xY)4+9;(p)+o) 

and taking the first direct image we obtain 

O+R’n*~(--/f-1)1R’n*O(+-114 
+R’n*9(-1)-O, 

where K: @‘1x Y+ 9 is a projection. It is known (cf. ref. [ 7 ] ) that R ‘z,X( - p- 1) 
and R ‘K, 0 ( - ,u - 1) 4 are locally free sheaves on % having the same dimensions 
equal to 4,~~ and if the mapping 

K:H’(~~xX,31r(---l)))-tH’(~x~, 0(-/H)“) 

is expressed in some basis then the order of zero in the point <= 0 of the function 
det K(C) is equal to a(O). 

The complex manifold %x.9' can be covered by two Stein sets ?‘&‘, $6 deter- 
mined by the conditions 1 q I> M (A4 large enough) and q# co, respectively. Con- 
sequently, Leray’s theorem on cohomology is applicable. For any coherent sheaf 
Y on %X 9, the vector space H’ ( 4Y'x 8, 9’) consists of holomorphic sections 
defined on wn %$ modulo sections having the form v/’ -v2, where vj is the re- 
striction of a holomorphic section on %‘$i= 1,2. Writing 

O(-$-1)4= 0(-~-1)%H?+~-1)‘, 

we choose a basis in H’ ( @X 9, 0 ( - p- 1)“) (expressed in the trivialization on 
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%$) as follows: 

{(~-+I, O)l<j<p, (9-‘e2, O)lsjapp (0, ‘1-‘e,),.jdp9 (0, V-‘e2)~upl (3.2) 

with {e,, ea} being a basis in @ 2. H’(%xY, X(-p-l)) can be regarded 
as a subspace in H’(%!x~‘, O(-,u-1)‘). An element Cf;g)EH’(%XP’, 
0(-~-1)~) belongstoH’(%‘XY,X(-p-1)) ifandonlyif 

tXt, v) +&VX vk(Cz v) =O . 

Since det F(q) =p and the expansion of G(& q) in the variable q at the point 
q=m has the form 

G(r,tl)=l+r-“[rl-1G,(r)+rl-2G2(r)+...l 3 

the following is true: 

(3.3) 

(i) A section cf; g) of X( -CL- 1) defined on ^Il;n ,9$ can be extended on %‘$ 
if and only if g(<, q) does not contain powers of the variable q greater than 
-2/l-- 1. 

(ii> A section (-~(rt)~u(C, ~1, Yq(rt)G-‘(<, tl)u(C rl)) of .~(-Pu- 1) de- 
fined on Kn Y#$ with u(<, q) not containing negative powers of the variable q 
can be extended on %$. 

It follows that the vectors 

{( -&W-jek, t “V’G-‘(t, ?)ek)l~jc~fl,k=1,2) (3.4) 

spanH1(~xY,~(-~-1))overthering~(~).Usingthebasis(3.2)andthe 
generators (3.4), one can replace the mapping IC by a ~,UX 6,u matrix with entries 
from the ring 0 = 0 ( a’) : 

0 -T, - T2 
> r, l-2 0 ’ (3.5) 

where 

Note that GG- ’ = 1 implies that in order to get r~ ’ it is enough to replace in r2 
the blocks Gjo by Gj and then multiply the resulting matrix by the term <-‘“. The 
matrices T,, T2 are constant and depend only on the coefficients rj of the poly- 
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nomial v(v). T, is upper triangular, T2 is lower triangular and regular. Conse- 
quently, the matrix (3.5) can be further reduced to the 2,ux 4~ matrix 

The multiplicity a( 0) can then be computed in the following way. It holds that 
dim Ker( H) = 2,~. Let P(r) be a ~PX 2,~ matrix with entries from the ring 0 
and such that Ker(H)ORan(P)=04P. Then the holomorphic function 
det ( H (<) P( <) ) has a zero in the point <= 0 and the order of this zero is equal to 
40). 

Proposition 3.2. Assume that II> 0 and condition (3. I) is satisfied in all the critical 
points (<, q)= (0, yj), 1 <j<c, andput 

r,‘(()r,(<)=<-‘” f CjZj, ZjE@2p*2p* 
j=O 

Then 

where 

a(O)=2pv-ranks, 

z, 0 

I. . 

. . . 0 
3= !I $ .*. p E@4P%4w. 

.\ 
\ Z2”-I zzv-2 *** 4 

Proof: The first task is to find a basis in Ker H over the ring 0. Clearly, 
cf; g) E 04J‘= 02%B 0”’ belongs to Ker H if and only if 

Since g( <) has no pole in the point {=O, one gets a condition on 
.I-(0 =h+zf++2fi+-.., viz. 341=0, where q,= cfo, fi, . . . . &-,)EQ=~~“. When in- 
vestigating the kernel of 3 one can reproduce verbatim the analysis given in the 
proof of lemma 2.2. It is enough to put I=@ and replace v by 2 v and r by 2,~. Then 
the proof can be followed up to the final part beginning with “Summarizing, . ..“. 
The only exception is that now we put 

and besides 

We claim that the vectors 



198 P. SIovifek / The instanton tnoduli spaces as algebraic sets 

{(Fjk(t), -ri'(T)rl(r)F,k(r)),,j~2v-, 3 

1 G/C</, (3.6) 
(sj(t>, -ri' (tlrl (Osj(T> 11 sjcdl 

form a basis in Ker( H(r) ) over the ring 8. To show this it is enough to set <=O 
in (3.6) and observe that the vectors 

{(h..) Jh 1<J<2V- 1.1 <!i<,j, (zOgj) I <j<dl 3 (3.7) 

where we have put 

hjk:=rT’(<)r, (O&(t) IC=O 

=Z2"-j~k+Z2~-j-~~j+I(~jk)+."+zl~*1,-l(V)ik) 3 

are independent in C ‘j’. Now, choose lo vectors {u,, . . . . u10 1 completing (3.7 ) to a 
basis in C2“ and put 

Wjk(~)=~k+~~j+~(~jk)+“‘f~2”-j-‘IK2”-~(~jk). 

Let P(C)ELO 4~~2p be the matrix 

det (<“ri’r,~jk)lsj<2~-~ 
( 

(<“ri’rlgj)l<jrd 
I <k</o 

(Tuuj) 1 .ielo) . 

Since 

(‘ri’rl Wjk=<y-ihjk+... , ~“ri’rlgj=(-“Zogj+‘e’, 

( A hjtc) A ( A Zogj) A ( A uj) +O > 

the lowest power of the variable c appearing in det ( H (<) P (C) ) with a nonzero 
coefficient is equal to 

(v-l)I,+(Y-2)12+...+(-Y+1)12”-,-vr+vlo 

=2vlo+(2v-l)f, +*“+I&, -Y(fo+...+l2”-, +r) 

=dim Ker(3)-2puv=2pv-rank(3) . 

This completes the proof. 0 

4. Derivation of the algebraic equations 

In this section we again use the coordinates &z,/zo, ~=z2/zo. The aim is to 
decide for which values of the parameters Sj, tj, Rjk the following equality holds: 
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cz(&) =c, (4.1) 
provided we are given a matrix-valued function G((, q) on P2. We still assume 
that c> 2. It turns out that the equality (4.1) leads to a system of algebraic equa- 
tions of which the derivation is rather straightforward with the help of proposi- 
tion 3.2. 

One can consider only the generic case when the polynomials 

/W(t)=r’+ C sjt'-' 9 /ko(rl)=rl’+ 1 tjrlc-' 

have no multiple roots. Then G( r, II) can be written in the form 

(4.2) 

where Xj, Y,E@, Xj~~@‘,’ and x,, . . . . x, are mutually different; the same is true for 
YI, *.., y,. We shall restrict ourselves to the case when tr Xjk#O for all j, k. This 
condition is again generic since it can be rewritten as an algebraic one. Actually, 
tr Xjk= 0 for some j, k if and only if 

fJ fi tr9?(x,,yk)=0, 
j=l k=l (4.3 1 

and the left hand side in (4.3) is a symmetric polynomial in the variables x,, . . . . 
x, and y,, . . . . yc and hence it can be rewritten as a polynomial in the variables s,, 
. . . . s c and t,, . . . . t,. 

We know that c2 (F) is equal to the sum of the multiplicities o(Xj) of the jump- 
ing lines <-Xj=O,j= 1, . . . . c. Since o( Xi) 2 1, the equality c2 = c is satisfied if and 
only if o(Xj) = 1 for allj. We shall compute a(~,); a(x2), . . . . 0(x,) can be com- 
puted analogously. Condition (3.1) is clearly satisfied and so one can apply prop- 
osition 3.2: 

. 

Let us write 

Xj=X,j 3 Qj= k$2&xkj* 

Then the unimodularity condition det G( <, q) = 1 implies 

detXj=O, i 
1 

- tr(XjXE) =O , 
n=l Yn-Yj 

tr(XjQy) =O , 

nzi 

trXj+ i 
1 

-tr(XjQi+X,QjO)=O, 
n=l Yn-Yj 

(4.4) 
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for all j. The two columns of Xj are dependent but, according to the assumption 
tr Xj# 0, the matrix Xj is nonzero. 

It is easy to find that [recall (3.3) ] 

G,(T) = j,,c=, t-xj pi-%. 

Now we can state the explicit formulae for the matrices Z,, Z,. But it appears to 
be more convenient to consider the transformed matrices Zb = U- ‘Z, V- I, 
Z’, =U-‘Z, I/-‘, where U=( U,)@l, V=(V,)@l and Ujk=yjie', Vjk=yf-li. 
After some straightforward computations one arrives at the following expres- 
sions. Let us split the matrices Zb, Z’, into 2cx 2 blocks: 

Then 

+8j= 

r 1 -x,x; 
Yl -Yj 

1 
-x2x,0 
Y2 -Y, 

1 
- xcx,” 
Yc -Yj 

Lemma 4.1. 

,  Uj= 

z; = (0, 62 a*. S,) . 

- $-+ (X,Q,O+QJ,O) 
1 J 

- & (x2QjO+QzXjO) 
J 

xjo+ i k=, & (&Q,O+Q&) 
J 

k+j 

- & (KQjo+QcX,o) 
C J 

(i) a(~,) = -2c+dim Ker 3’ 2 -c+dim Ker Zb, where we haveput 

3’= (=p ;J. 
I 

(ii) dim Ker Zb > c+ 1 and hence a(x, ) > 1 (as it should be). 
(iii) Provided Xz Xj # 0 for som e two indices j, k (then necessarily j# k), we have 

dim Ker Zb > c+ 2 and hence Q(X, ) > 2. 

Proof: 
(i) Equations (4.4) imply @jXj+sjQj=O. It follows that dim Ker 3’ 

>c+dim Ker Zb. 
(ii) Equations (4.4) imply that 5, +82+**.-i-5C=0 and, moreover, gjXj=O. 

Put 
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Zb’=(iY, 82 ... K--I). 

Then rankZb=rankZg<2(c-l)-(c-l)=c-1. It follows that dimKerZb 
=2c-rank Zb ac+ 1. 

(iii) Suppose, for example, that X:X, ~0. Then 

5,x,+52xc+...+5c-1xc= (5, +~*+*-+&.)xc=o. 

Due to the condition X:X, # 0, one has rank(X,, X,) =2. Consequently, 
rank Zg <c- 2 and dim ker Zb > c+ 2. 0 

Corollary 4.2. The equality c2 (F) = c can hold only if the necessary condition 

X~kXjI = 0 for all j, k, 1, (4.5) 

is satisjied. 

It remains to state also a sufficient condition for the equality CJ(X, ) = I. But 
one can readily verify by checking the matrix 3’ that this is already the generic 
case. To complete the discussion it is necessary to rewrite condition (4.5 ) as a 
system of algebraic equations for the complex variables Sj, tj, Rjk. Condition (4.5 ) 
means that 

C&?(xj, xk)OW(Xj, y,) =O for all j, k, 1. 

Hence the polynomial function VH 9( Xi, q) O W( Xj, y,) has c different roots but the 
degree of this polynomial is equal at most to (c- 1). So 

9?(Xj,q)09(Xj,y/)=0 forall~andforallj,l. 

Analogously, 

9(xj,q)09(xj,p)=0 forall~,~andallj. 

It follows that 

2(<, rl)“~KPu)=~(o~(~> %PL) 3 (4.6) 

where 9 (r, q, p) is a matrix-valued polynomial and its degree in the variable <is 
equal at most to (c-2), 

c-2 

Write 
m2(n) c c 

zz(%Pu)’ ,,,=;,(n) ,;, ,;, R~-l,l.kRc-n+m.ltlC-kr(lc-” (4.7) 

rn, (n) =max(O, n-c+ 1) , m,(n)=min(c-1, n) , O<n<2c-2. 
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Then eq. (4.6 ) is equivalent to 

wherej,(n)=max(O, c-n),j?(n)=min(c, 2c-2-n). The last (c-l) equa- 
tions in (4.8) can be used to express the polynomials PO( <, q), . . . . PC-z (<, 17) with 
the help of the polynomials z(<, q), . . . . &-z(& q). Substituting them into the 
first c equations one gets the desired system of algebraic equations 

i 

= :I;:gi;R2j3 ~~)[“;I 

sy =(-l)jdet[: s’, JJ!l 11 :I. 

1 
3 (4.9) 

Both sides in (4.9) are polynomials in the variables II, p and the equality means 
that the corresponding coefficients are equal. The system (4.9) is additional to 
the unimodularity condition det G( r, q) = 1. This condition can be rewritten as 

~o(tf>~m(rl) tr a(t, rl)+det W(<, tl) =O . (4.10) 

This equality again means that the coefficients of the left hand polynomial van- 
ish. Let us now summarize the result. 

Theorem 4.3. Put %=C22c(2c+‘) \ 8, where 8 is the algebraic set determined by the 
equality (4.3) and by the condition that the discriminant of at least one of the po- 
lynomials/lo(<),b,(v) vanishes. Then eqs. (4.9) and (4. IO) determine an irreduc- 
ible algebraic set sQ( 2, c) in the open set %‘, dim ,cP( 2, c) =4c, and 
0M(2,c)n%c6(2,c). 

5. Concluding remark 

The concept of the canonical transition function can be developed also for 
framed holomorphic bundles on higher-dimensional projective spaces (cf. 
ref. [ 3 ] ) . But the problem of removability of singularities has not yet been solved 
for dimensions higher than two. In particular, it would be interesting to have a 
solution to this problem in the three-dimensional case as it is closely related to 
instantons. It is reasonable to expect that the ability to treat singularities on P3 
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could provide a deeper insight into Donaldson’s restriction mapping, similar to 
that already achieved for the two-instanton case (cf. the appendix). 

Consider the standard situation on P”, n 3 3. Y0 c P” is a fixed line and PO, 
Pock Y0 are two fixed distinct points. Suppose G is a rational matrix-valued func- 
tion on P” of some appropriate form. Choose a projective subspace IF’“-’ in P” not 
intersecting the line YO. To each point Q from tPm2 there corresponds a plane 
go = QYO. Then the restriction Go- -GI 9o determines a framed holomorphic 
bundle FQ on 9$. Let c2 (Q) designate the value of the second Chem class of this 
bundle. A necessary condition for the singularities on P” to be removable is 

c2 (Q) = constant on W-2 . 

Let us conjecture that this condition is also sufficient. 

Appendix. Donaldson’s restriction for two instantons 

As was mentioned in the introduction, G(r, II) regarded as a transition func- 
tion patches together two open sets @O, qW in P2. But one can change the order of 
these sets, i.e., replace the points PO, P,EY~ by one another. After this transfor- 
mation, G( <, q) is replaced by G( II, <) - ’ and for the parameters this means that 
Xj is replaced by Yj and yk by xk and Xjk by XFj in formula (4.2). Clearly, this 
transformation does not influence the topological charge. Consequently, one gets, 
in addition to (4.5), another necessary condition for the equality c2(F) =c. 
Namely, 

Xkj XE = 0 for all j, k, 1. 

These conditions suggest a parameterization of the complex manifold M( 2, c). 
The matrices Xj~ should have [almost everywhere on M( 2, c) ] the form 

So the points from M(2, c) are determined by the 4c parameters xl, . . . . x,; y,, . . . . 
y,; UI, . ..) u,; VI) . . . . v, and the parameterization is unique up to the numbering of 
the roots x,, . . . . x, and yl, . . . . y,. The unimodularity implies that the c2 complex 
parameters ejk should be obtained as a (nontrivial) solution of the following sys- 
tem of c2 quadratic equations: 

(1 +YjukjEjk 

forj, k= 1, . . . . c. Since 
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j$, (l+UjUk)Ejk= i (l+UkVj)Ekj=O, 
j= I 

the number of quadratic equations can be reduced to (c- 1 )2. 
The comparatively small number of parameters enables one to treat the two- 

instanton case in more detail. Particularly, one is able to solve the above qua- 
dratic equations and write down the parameterization of M( 2, 2 ) explicitly. It is 
interesting that this parameterization enables one to find the inversion of Don- 
aldson’s one-to-one mapping M( 2, 2 ) + OM( 2, 2) in explicit form as well. The 
formulae stated below were found by trial and error. 

The manifold UM(2, c) is parameterized with the help of eight independent 
complex variables xl, x2, y,, yz, u,, u2, uI, v2 satisfying the restrictions 

x1+x2, YlfY2, tllfU2, VlZV2, 

1 + UjVk # 0 for all j, k . 

The solution of the quadratic equations is then given by 

~~~=(-l)j+kL 

1 +UjUk ’ 

E= (x2 -XI 1 (Y2 -Y,) 

x (1+ul~l)(1+ul~2)(1+u2~l)(1+~2~2) 

(u+.4~)2(u~-uI)2 . 

This parameterization is unique up to the numbering of the roots xl, x2 and yI, 
y,. So the parameterized set is a four-fold covering of an open dense subset in 
OiV. The group H2 x Z2 acts transitively on the fibres of this covering. 

A two-instanton solution in the ADHM construction (cf. ref. [ 51) is deter- 
mined by a quadruple of matrices aI, (Ye, a, kC2q2 which satisfy 

ba+[a,,a,]=O, 

[a,, at] + [CQ, a$] +bb+-a+u=o . 
The CTF G( {, q) is related to the ADHM data ( CY,, cy2, a, b) by the identity (cf. 
ref. [3]) 

To find the inversion to Donaldson’s mapping means to relate to the eight pa- 
rameters Xj, yj, Uj, vj a quadruple ( CY,, CY~, U, b). 

First, express the parameters ul, u2, ul, v2 with the help of other complex pa- 
rameters K, p, V, p, cy: 
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2 sinh(v-p) 
” =FC cosh(p++) ’ 

u =K2 cosh(vfiu) 
’ sinh(v+ V) ’ 

‘IzK- 
2 sinh(y/- v) 2 cosh(y/- v) 

cosh(y/+/) ’ “=Ic- sinh(y/+p) ’ 

and put 

The solution of these equations is not unique. Provided K, pO, IQ,, pO, y. is a solu- 
tion, then K, r(lo+~, ye-z, qo+r, yo-~ will do as well. The equationJ(z)=O, 
where 

f(7)=lx2-x, 12sinh(47+4Re(po)+lyz-y, 12sinh(4r-4Rey/,) 

+~~~I~sinh(2~+2Re~)+~w/~I~sinh(2r-2Rev~) 

is a real function in one real variable, has the unique solution 7odR. Put 

p=j&3+70, V=Yo-70, p=qlo+7l3, v/=y43-70. 

Then the desired explicit expressions for CY,, 02, a, b are as follows: 

x2-x1 1 
a,=x, 1+ - 

( 

-ee2’ 

&:[ ) 

> 1 ’ 

a,=-y,l-L 
1 ezy 

e-w 1 ’ 
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